人工智能作为新一轮产业变革的核心驱动力,将催生新的技术、产品、产业、业态、模式,从而引发经济结构的重大变革,实现社会生产力的整体提升。到 2025 年全球人工智能应用市场规模总值将达到 1270 亿美元,人工智能将是众多智能产业发展的突破点。
通过对人工智能产业分布进行梳理,提出了人工智能产业生态图,主要分为核心业态、关联业态、衍生业态三个层次。
下面将重点对核心业态包含的智能基础设施建设、智能信息及数据、智能技术服务、智能产品四个方面展开介绍,并总结人工智能行业应用及产业发展趋势。
核心业务:智能基础设施
智能基础设施为人工智能产业提供计算能力支撑,其范围包括智能传感器、智能芯片、分布式计算框架等,是人工智能产业发展的重要保障。
1、智能芯片
智能芯片从应用角度可以分为训练和推理两种类型。从部署场景来看,可以分为云端和设备端两步大类。训练过程由于涉及海量的训练数据和复杂的深度神经网络结构,需要庞大的计算规模,主要使用智能芯片集群来完成。与训练的计算量相比,推理的计算量较少,但仍然涉及大量的矩阵运算。目前,训练和推理通常都在云端实现,只有对实时性要求很高的设备会交由设备端进行处理。
随着互联网用户量和数据规模的急剧膨胀,人工智能发展对计算性能的要求迫切增长,对CPU计算性能提升的需求超过了摩尔定律的增长速度。同时,受限于技术原因,传统处理器性能也无法按照摩尔定律继续增长,发展下一代智能芯片势在必行。
未来的智能芯片主要是在两个方向发展:一是模仿人类大脑结构的芯片,二是量子芯片。智能芯片是人工智能时代的战略制高点,预计到 2020 年人工智能芯片全球市场规模将突破百亿美元。
2、智能传感器
智能传感器是具有信息处理功能的传感器。智能传感器带有微处理机,具备采集、处理、交换信息等功能,是传感器集成化与微处理机相结合的产物。智能传感器属于人工智能的神经末梢,用于全面感知外界环境。各类传感器的大规模部署和应用为实现人工智能创造了不可或缺的条件。不同应用场景,如智能安防、智能家居、智能医疗等对传感器应用提出了不同的要求。
未来,随着人工智能应用领域的不断拓展,市场对传感器的需求将不断增多,2020 年市场规模有望突破 4600 亿美元。高敏度、高精度、高可靠性、微型化、集成化将成为智能传感器发展的重要趋势。
3、分布式计算框架
面对海量的数据处理、复杂的知识推理,常规的单机计算模式已经不能支撑。所以,计算模式必须将巨大的计算任务分成小的单机可以承受的计算任务,即云计算、边缘计算、大数据技术提供了基础的计算框架。
核心业务:智能信息及数据
信息数据是人工智能创造价值的关键要素之一。我国庞大的人口和产业基数带来了数据方面的天生优势。随着算法、算力技术水平的提升,围绕数据的采集、分析、处理产生了众多的企业。目前,在人工智能数据采集、分析、处理方面的 企业主要有两种:
一种是数据集提供商,以提供数据为自身主要业务,为需求方提供机器学习等技术所需要的不同领域的数据集;
另一种是数据采集、分析、处理综合性厂商,自身拥有获取数据的途径,并对采集到的数据进行分析处理,最终将处理后的结果提供给需求方进行使用。对于一些大型企业,企业本身也是数据分析处理结果的需求方。
核心业务:智能技术服务
智能技术服务主要关注如何构建人工智能的技术平台,并对外提供人工智能相关的服务。此类厂商在人工智能产业链中处于关键位置,依托基础设施和大量的数据,为各类人工智能的应用提供关键性的技术平台、解决方案和服务。目前,从提供服务的类型来看,提供技术服务厂商包括以下几类:
1、提供人工智能的技术平台和算法模型
此类厂商主要针对用户或者行业需求,提供人工智能技术平台以及算法模型。用户可以在人工智能平台上,通过一系列的算法模型来进行人工智能的应用开发。此类厂商主要关注人工智能的通用计算框架、算法模型、通用技术等关键领域。
2、提供人工智能的整体解决方案
此类厂商主要针对用户或者行业需求,设计和提供包括软、硬件一体的行业人工智能解决方案,整体方案中集成多种人工智能算法模型以及软、硬件环境,帮助用户或行业解决特定的问题。此类厂商重点关注人工智能在特定领域或者特定行业的应用。
3、提供人工智能在线服务
此类厂商一般为传统的云服务提供厂商,主要依托其已有的云计算和大数据应用的用户资源,聚集用户的需求和行业属性,为客户提供多类型的人工智能服务;从各类模型算法和计算框架的 API 等特定应用平台到特定行业的整体解决方案等,进一步吸引大量的用户使用,从而进一步完善其提供的人工智能服务。此类厂商主要提供相对通用的人工智能服务,同时也会关注一些重点行业和领域。
需要指出的是,上述三类角色并不是严格区分开的,很多情况下会出现重叠,随着技术的发展成熟,在人工智能产业链中已有大量的厂商同时具备上述两类或者三类角色的特征。
核心业务:智能产品
智能产品是指将人工智能领域的技术成果集成化、产品化,具体的分类如下表所示:
随着制造强国、网络强国、数字中国建设进程的加快,在制造、家居、金融、教育、交通、安防、医疗、物流等领域对人工智能技术和产品的需求将进一步释放,相关智能产品的种类和形态也将越来越丰富。