随着深度学习技术的成熟,AI人工智能正在逐步从尖端技术变得普及,人们对AI的好奇也在慢慢积累。
AI技术应用主要是在以下几个方面:自然语言处理,包括语音和语义识别、自动翻译;计算机视觉,图像识别;知识表示;自动推理,包括规划和决策;机器学习和机器人学。按照技术类别来分,可以分成感知输入,学习与训练两种。
由此,计算机通过语言识别、图像识别、读取知识库、人机交互、物理传感等方式,获得音视频的感知输入,然后从大数据中进行学习,得到一个有决策和创造能力的大脑,就是AI的应用过程。
从上世纪八九十年代的PC时代,进入到互联网时代后,给我们带来的是信息的爆炸和信息载体的去中心化。而网络信息获取渠道从PC转移到移动端后,万物互联成为趋势,但技术的限制导致移动互联网难以催生出更多的新应用和商业模式。而现在,大规模并行计算、大数据、深度学习算法和人脑芯片这四大催化剂的发展,以及计算成本的降低,使得人工智能技术突飞猛进。
以下则是驱动人工智能发展的先决条件:
物联网 ——物联网提供了计算机感知和控制物理世界的接口和手段,它们负责采集数据、记忆、分析、传送数据、交互、控制等等。摄像头和相机记录了关于世界的大量的图像和视频,麦克风记录语音和声音,各种传感器将它们感受到的世界数字化等等。这些传感器,就如同人类的五官,是智能系统的数据输入,感知世界的方式。而大量智能设备的出现则进一步加速了传感器领域的繁荣,这些延伸向真实世界各个领域的触角是机器感知世界的基础,而感知则是智能实现的前提之一。
大规模并行计算 ——人脑中有数百至上千亿个神经元,每个神经元都通过成千上万个突触与其他神经元相连,形成了非常复杂和庞大的神经网络,以分布和并发的方式传递信号。这种超大规模的并行计算结构使得人脑远超计算机,成为世界上最强大的信息处理系统。近年来,基于GPU(图形处理器)的大规模并行计算异军突起,使智能设备拥有了远超CPU的并行计算能力。
从处理器的计算方式来看,CPU计算使用基于x86指令集的串行架构,适合尽可能快的完成一个计算任务。而GPU从诞生之初是为了处理3D图像中的上百万个像素图像,拥有更多的内核去处理更多的计算任务。因此GPU天然具备了执行大规模并行计算的能力。云计算的出现、GPU的大规模应用使得集中化的数据计算处理能力变得前所未有的强大。
大数据 ——根据统计,2017年全球产生的数据总量达到了十年前的20多倍,海量的数据为人工智能的学习和发展提供了非常好的基础。机器学习是人工智能的基础,而数据和以往的经验,就是人工智能学习的书本,以此优化计算机的处理性能。
深度学习算法 ——最后,这是人工智能进步最重要的条件,也是当前人工智能最先进、应用最广泛的核心技术。深层神经网络逐层训练的高效算法,让当时计算条件下的神经网络模型训练成为了可能,同时通过深度神经网络模型得到的优异的实验结果让人们开始重新关注人工智能。
人工智能已经走出实验室,开始改变人们生活的方方面面了,在不久的未来AI将会把我们带入怎样的智能时代,让我们一起期待!